1932

Abstract

Reaction intermediates buried within a solid-liquid interface are difficult targets for physiochemical measurements. They are inherently molecular and locally dynamic, while their surroundings are extended by a periodic lattice on one side and the solvent dielectric on the other. Challenges compound on a metal-oxide surface of varied sites and especially so at its aqueous interface of many prominent reactions. Recently, phenomenological theory coupled with optical spectroscopy has become a more prominent tool for isolating the intermediates and their molecular dynamics. The following article reviews three examples of the SrTiO-aqueous interface subject to the oxygen evolution from water: reaction-dependent component analyses of time-resolved intermediates, a Fano resonance of a mode at the metal-oxide–water interface, and reaction isotherms of metastable intermediates. The phenomenology uses parameters to encase what is unknown at a microscopic level to then circumscribe the clear and macroscopically tuned trends seen in the spectroscopic data.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-062123-022921
2024-06-28
2025-03-15
The full text of this item is not currently available.

Literature Cited

  1. 1.
    Chen X, Aschaffenburg D, Cuk T. 2017.. One-electron intermediates of water oxidation & the role of solvation in their stability. . J. Mater. Chem. A 5::1141017
    [Crossref] [Google Scholar]
  2. 2.
    Sievers C, Noda Y, Qi L, Albuquerque EM, Rioux RM, Scott SL. 2016.. Phenomena affecting catalytic reactions at solid–liquid interfaces. . ACS Catal. 6::8286307
    [Crossref] [Google Scholar]
  3. 3.
    He YB, Tilocca A, Dulub O, Selloni A, Diebold U. 2009.. Local ordering and electronic signatures of submonolayer water on anatase TiO2(101). . Nat. Mater. 8::58589
    [Crossref] [Google Scholar]
  4. 4.
    Diebold U. 2003.. The surface science of titanium dioxide. . Surf. Sci. Rep. 48::53229
    [Crossref] [Google Scholar]
  5. 5.
    Aschaffenburg DJ, Kawasaki S, Pemmaraju CD, Cuk T. 2020.. Accuracy in resolving the first hydration layer on a transition-metal oxide surface: experiment (AP-XPS) and theory. . J. Phys. Chem. C 124::2140717
    [Crossref] [Google Scholar]
  6. 6.
    Stoerzinger KA, Hong WT, Crumlin EJ, Bluhm H, Shao-Horn Y. 2015.. Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy. . Acc. Chem. Res. 48::297683
    [Crossref] [Google Scholar]
  7. 7.
    Courter C, Stewart J, Cuk T. 2023.. Moderate electron doping assists in dissociating water on a transition metal oxide surface (n-SrTiO3). . J. Phys. Chem. C 127::490516
    [Crossref] [Google Scholar]
  8. 8.
    Fayer MD. 2012.. Dynamics of water interacting with interfaces, molecules, and ions. . Acc. Chem. Res. 45::314
    [Crossref] [Google Scholar]
  9. 9.
    Ahmed S, Pasti A, Fernández-Terán RJ, Ciardi G, Shalit A, Hamm P. 2018.. Aqueous solvation from the water perspective. . J. Chem. Phys. 148::234505
    [Crossref] [Google Scholar]
  10. 10.
    Hammes-Schiffer S, Stuchebrukhov AA. 2010.. Theory of coupled electron and proton transfer reactions. . Chem. Rev. 110::693960
    [Crossref] [Google Scholar]
  11. 11.
    Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Norskov JK, Jaramillo TF. 2017.. Combining theory and experiment in electrocatalysis: insights into materials design. . Science 355::eaad4998
    [Crossref] [Google Scholar]
  12. 12.
    Hammer B, Norskov JK. 2004.. Theoretical surface science and catalysis—calculations and concepts. . Adv. Catal. 45::71129
    [Crossref] [Google Scholar]
  13. 13.
    Busch M, Halck NB, Kramm UI, Siahrostami S, Krtil P, Rossmeisl J. 2016.. Beyond the top of the volcano? – A unified approach to electrocatalytic oxygen reduction and oxygen evolution. . Nano Energy 29::12635
    [Crossref] [Google Scholar]
  14. 14.
    Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Nørskov JK. 2007.. Electrolysis of water on oxide surfaces. . J. Electroanal. Chem. 607::8389
    [Crossref] [Google Scholar]
  15. 15.
    Man IC, Su H-Y, Calle-Vallejo F, Hansen HA, Martínez JI, et al. 2011.. Universality in oxygen evolution electrocatalysis on oxide surfaces. . ChemCatChem 3::115965
    [Crossref] [Google Scholar]
  16. 16.
    Timoshenko J, Cuenya BR. 2021.. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. . Chem. Rev. 121::882961
    [Crossref] [Google Scholar]
  17. 17.
    Hammarstrom L, Hammes-Schiffer S. 2009.. Artificial photosynthesis and solar fuels. . Acc. Chem. Res. 42::185960
    [Crossref] [Google Scholar]
  18. 18.
    Banin U, Waiskopf N, Hammarstrom L, Boschloo G, Freitag M, et al. 2021.. Nanotechnology for catalysis and solar energy conversion. . Nanotechnology 32::042003
    [Crossref] [Google Scholar]
  19. 19.
    Suntivich J, Cuk T. 2023.. Experimental detection of intermediates of the oxygen evolution reaction at aqueous metal-oxide interfaces. . In Encyclopedia of Solid-Liquid Interfaces, ed. K Wandelt, G Bussetti , pp. 15765. Amsterdam:: Elsevier
    [Google Scholar]
  20. 20.
    Kuo D-Y, Paik H, Kloppenburg J, Faeth B, Shen KM, et al. 2018.. Measurements of oxygen electroadsorption energies and oxygen evolution reaction on RuO2(110): a discussion of the Sabatier principle and its role in electrocatalysis. . J. Am. Chem. Soc. 140::17597605
    [Crossref] [Google Scholar]
  21. 21.
    Lyle H, Singh S, Paolino M, Vinogradov I, Cuk T. 2021.. The electron-transfer intermediates of the oxygen evolution reaction (OER) as polarons by in situ spectroscopy. . Phys. Chem. Chem. Phys. 23::249845002
    [Crossref] [Google Scholar]
  22. 22.
    Kraack JP, Hamm P. 2017.. Surface-sensitive and surface-specific ultrafast two-dimensional vibrational spectroscopy. . Chem. Rev. 117::1062364
    [Crossref] [Google Scholar]
  23. 23.
    Starr DE, Hävecker M, Knop-Gericke A, Favaro M, Vadilonga S, et al. 2022.. The Berlin Joint Lab for Electrochemical Interfaces, BElChem: a facility for in-situ and operando NAP-XPS and NAP-HAXPES studies of electrochemical interfaces at BESSY II. . Synchrotron Radiat. News 35::5460
    [Crossref] [Google Scholar]
  24. 24.
    Li J, Triana CA, Wan W, Adiyeri Saseendran DP, Zhao Y, et al. 2021.. Molecular and heterogeneous water oxidation catalysts: recent progress and joint perspectives. . Chem. Soc. Rev. 50::244485
    [Crossref] [Google Scholar]
  25. 25.
    van Oversteeg CHM, Doan HQ, de Groot FMF, Cuk T. 2017.. In situ X-ray absorption spectroscopy of transition metal based water oxidation catalysts. . Chem. Soc. Rev. 46::10225
    [Crossref] [Google Scholar]
  26. 26.
    Sivasankar N, Weare WW, Frei H. 2011.. Direct observation of a hydroperoxide surface intermediate upon visible light-driven water oxidation at an Ir oxide nanocluster catalyst by rapid-scan FT-IR spectroscopy. . J. Am. Chem. Soc. 133::1297679
    [Crossref] [Google Scholar]
  27. 27.
    Liu H, Frei H. 2020.. Observation of O–O bond forming step of molecular Co4O4 cubane catalyst for water oxidation by rapid-scan FT-IR spectroscopy. . ACS Catal. 10::213847
    [Crossref] [Google Scholar]
  28. 28.
    Pham HH, Cheng M-J, Frei H, Wang L-W. 2016.. Surface proton hopping and fast-kinetics pathway of water oxidation on Co3O4(001) surface. . ACS Catal. 6::561017
    [Crossref] [Google Scholar]
  29. 29.
    Formal FL, Pastor E, Tilley D, Mesa CA, Pendlebury SR, et al. 2015.. Rate law analysis of water oxidation on a hematite surface. . J. Am. Chem. Soc. 137::662937
    [Crossref] [Google Scholar]
  30. 30.
    Mesa CA, Francas L, Yang KR, Garrido-Barros P, Pasto E, et al. 2020.. Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. . Nat. Chem. 12::8289
    [Crossref] [Google Scholar]
  31. 31.
    Zhang M, de Respinis M, Frei H. 2014.. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. . Nat. Chem. 6::36267
    [Crossref] [Google Scholar]
  32. 32.
    Zhang M, Frei H. 2014.. Towards a molecular level understanding of the multi-electron catalysis of water oxidation on metal oxide surfaces. . Catal. Lett. 145::42035
    [Crossref] [Google Scholar]
  33. 33.
    Eom CJ, Suntivich J. 2019.. In situ stimulated Raman spectroscopy reveals the phosphate network in the amorphous cobalt oxide catalyst and its role in the catalyst formation. . J. Phys. Chem. C 123::2928490
    [Crossref] [Google Scholar]
  34. 34.
    Singh S, Lyle H, D'Amario L, Magnano E, Vinogradov I, Cuk T. 2021.. Coherent acoustic interferometry during the photo-driven oxygen evolution reaction associates strain fields with the reactive oxygen intermediate (Ti-OH*). . J. Am. Chem. Soc. 143::1598497
    [Crossref] [Google Scholar]
  35. 35.
    Herlihy DM, Waegele MM, Chen X, Pemmaraju CD, Prendergast D, Cuk T. 2016.. Detecting the oxyl radical of photocatalytic water oxidation at an n-SrTiO3/aqueous interface through its subsurface vibration. . Nat. Chem. 8::54955
    [Crossref] [Google Scholar]
  36. 36.
    Chen X, Choing SN, Aschaffenburg DJ, Pemmaraju CD, Prendergast D, Cuk T. 2017.. The formation time of Ti–O and Ti–O–Ti radicals at the n-SrTiO3/aqueous interface during photocatalytic water oxidation. . J. Am. Chem. Soc. 139::183041
    [Crossref] [Google Scholar]
  37. 37.
    Vinogradov I, Singh S, Lyle H, Paolino M, Mandal A, et al. 2022.. Free energy difference to create the M-OH* intermediate of the oxygen evolution reaction by time-resolved optical spectroscopy. . Nat. Mater. 21::8894
    [Crossref] [Google Scholar]
  38. 38.
    Waegele MM, Chen X, Herlihy DM, Cuk T. 2014.. How surface potential determines the kinetics of the first hole transfer of photocatalytic water oxidation. . J. Am. Chem. Soc. 136::1063239
    [Crossref] [Google Scholar]
  39. 39.
    Chen X, Aschaffenburg DJ, Cuk T. 2019.. Selecting between two transition states by which water oxidation intermediates decay on an oxide surface. . Nat. Catal. 2::82027
    [Crossref] [Google Scholar]
  40. 40.
    Watanabe T, Fujishima A, Honda K-I. 1976.. Photoelectrochemical reactions at SrTiO3 single crystal electrode. . Bull. Chem. Soc. Jpn. 49::35558
    [Crossref] [Google Scholar]
  41. 41.
    Wrighton MS, Ellis AB, Wolczanski PT, Morse DL, Abrahamson HB, Ginley DS. 1976.. Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential. . J. Am. Chem. Soc. 98::277479
    [Crossref] [Google Scholar]
  42. 42.
    Stewart GW. 1993.. On the early history of the singular value decomposition. . SIAM Rev. 35::55166
    [Crossref] [Google Scholar]
  43. 43.
    Jolliffe IT, Cadima J. 2016.. Principal component analysis: a review and recent developments. . Philos. Trans. R. Soc. A 374::20150202
    [Crossref] [Google Scholar]
  44. 44.
    Schmidt M, Rajagopal S, Ren Z, Moffat K. 2003.. Application of singular value decomposition to the analysis of time-resolved macromolecular X-ray data. . Biophys. J. 84::211229
    [Crossref] [Google Scholar]
  45. 45.
    van Stokkum IHM, Larsen DS, van Grondelle R. 2004.. Global and target analysis of time-resolved spectra. . Biochim. Biophys. Acta Bioenerget. 1657::82104
    [Crossref] [Google Scholar]
  46. 46.
    Janotti A, Varley JB, Choi M, Van de Walle CG. 2014.. Vacancies and small polarons in SrTiO3. . Phys. Rev. B 90::085202
    [Crossref] [Google Scholar]
  47. 47.
    Mochizuki S, Fujishiro F, Minami S. 2005.. Photoluminescence and reversible photo-induced spectral change of SrTiO3. . J. Phys. Condens. Matter 17::92348
    [Crossref] [Google Scholar]
  48. 48.
    Rubano A, Paparo D, Granozio FM, Uccio U, Marrucci L. 2009.. Blue luminescence of SrTiO3 under intense optical excitation. . J. Appl. Phys. 106::103515
    [Crossref] [Google Scholar]
  49. 49.
    Penrose R. 1955.. A generalized inverse for matrices. . Math. Proc. Camb. Philos. Soc. 51::40613
    [Crossref] [Google Scholar]
  50. 50.
    Loan CFV. 1976.. Generalizing the singular value decomposition. . SIAM J. Numer. Anal. 13::7683
    [Crossref] [Google Scholar]
  51. 51.
    Paige CC, Saunders MA. 1981.. Towards a generalized singular value decomposition. . SIAM J. Numer. Anal. 18::398405
    [Crossref] [Google Scholar]
  52. 52.
    Hamm P. 2021.. Transient 2D IR spectroscopy from micro- to milliseconds. . J. Chem. Phys. 154::104201
    [Crossref] [Google Scholar]
  53. 53.
    Fayer MD, Moilanen DE, Wong D, Rosenfeld DE, Fenn EE, Park S. 2009.. Water dynamics in salt solutions studied with ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy. . Acc. Chem. Res. 42::121019
    [Crossref] [Google Scholar]
  54. 54.
    Jonas DM. 2003.. Two-dimensional femtosecond spectroscopy. . Annu. Rev. Phys. Chem. 54::42563
    [Crossref] [Google Scholar]
  55. 55.
    Tek G, Hamm P. 2020.. A correction scheme for Fano line shapes in two-dimensional infrared spectroscopy. . J. Phys. Chem. Lett. 11::618590
    [Crossref] [Google Scholar]
  56. 56.
    Yang W, Liu Y, Edvinsson T, Castner A, Wang S, et al. 2021.. Photoinduced Fano resonances between quantum confined nanocrystals and adsorbed molecular catalysts. . Nano Lett. 21::581318
    [Crossref] [Google Scholar]
  57. 57.
    Fano U. 1961.. Effects of configuration interaction on intensities and phase shifts. . Phys. Rev. 124::186678
    [Crossref] [Google Scholar]
  58. 58.
    Gervais F, Servoin J-L, Baratoff A, Bednorz JG, Binnig G. 1993.. Temperature dependence of plasmons in Nb-doped SrTiO3. . Phys. Rev. B 47::818794
    [Crossref] [Google Scholar]
  59. 59.
    Giguère PA, Harvey KB. 1956.. On the infrared absorption of water and heavy water in condensed states. . Can. J. Chem. 34::798808
    [Crossref] [Google Scholar]
  60. 60.
    Milosevic M. 2012.. Internal Reflection and ATR Spectroscopy. Hoboken, NJ:: Wiley
    [Google Scholar]
  61. 61.
    Bockris JO, Devanathan MAV, Müller K. 1963.. On the structure of charged interfaces. . Proc. R. Soc. A 274::5579
    [Google Scholar]
  62. 62.
    Stillinger FH Jr., Kirkwood JG. 2004.. Theory of the diffuse double layer. . J. Chem. Phys. 33::128290
    [Crossref] [Google Scholar]
  63. 63.
    Rabani J, Matheson MS. 1964.. Pulse radiolytic determination of pK for hydroxyl ionic dissociation in water. . J. Am. Chem. Soc. 86::317576
    [Crossref] [Google Scholar]
  64. 64.
    Weeks JL, Rabani J. 1966.. The pulse radiolysis of deaerated aqueous carbonate solutions. I. Transient optical spectrum and mechanism. II. pK for OH radicals. . J. Phys. Chem. 70::21006
    [Crossref] [Google Scholar]
  65. 65.
    Trojanowicz M, Bobrowski K, Szreder T, Bojanowska-Czajka A. 2018.. Chapter 9 - Gamma-ray, X-ray and electron beam based processes. . In Advanced Oxidation Processes for Waste Water Treatment, ed. SC Ameta, R Ameta , pp. 257331. Cambridge, MA:: Academic
    [Google Scholar]
  66. 66.
    Xu Y, Schoonen MAA. 2000.. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. . Am. Mineral. 85::54356
    [Crossref] [Google Scholar]
  67. 67.
    Cooper G, Turner JA, Nozik AJ. 1982.. Mott-Schottky plots and flatband potentials for single crystal rutile electrodes. . J. Electrochem. Soc. 129::1973
    [Crossref] [Google Scholar]
  68. 68.
    Cheng J, Sprik M. 2010.. Acidity of the aqueous rutile TiO2(110) surface from density functional theory based molecular dynamics. . J. Chem. Theory Comput. 6::88089
    [Crossref] [Google Scholar]
  69. 69.
    Swenson H, Stadie NP. 2019.. Langmuir's theory of adsorption: a centennial review. . Langmuir 35::540926
    [Crossref] [Google Scholar]
  70. 70.
    Parsons R. 1958.. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. . Trans. Faraday Soc. 54::105363
    [Crossref] [Google Scholar]
  71. 71.
    Imanishi A, Okamura T, Ohashi N, Nakamura R, Nakato Y. 2007.. Mechanism of water photooxidation reaction at atomically flat TiO2 (rutile) (110) and (100) surfaces: dependence on solution pH. . J. Am. Chem. Soc. 129::1156978
    [Crossref] [Google Scholar]
  72. 72.
    Norskov JK, Bligaard T, Hvolbaek B, Abild-Pedersen F, Chorkendorff I, Christensen CH. 2008.. The nature of the active site in heterogeneous metal catalysis. . Chem. Soc. Rev. 37::216371
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-physchem-062123-022921
Loading
/content/journals/10.1146/annurev-physchem-062123-022921
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error